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SUMMARY

A three-dimensional explicit time marching algorithm has been developed for the numerical solution of
inviscid internal �ows. The formulation uses the natural streamline co-ordinate system. The unsteady
Euler equations in non-conservative form are expressed in terms of the extended Riemann variables
and the �ow angles. Along the characteristic trajectories in the space–time domain, these equations
reduce to a system of ordinary di�erential equations. Boundary conditions are also implemented in
characteristic form. Shock waves are calculated after performing a one-point shock correction that
maintains conservation across the discontinuity.
The algorithm has been applied to subsonic, transonic and supersonic test cases. Despite the wide

range in the Mach number and the diversity of the tested �ow geometries, close agreement have been
obtained with available analytical and numerical results. Copyright ? 2003 John Wiley & Sons, Ltd.

KEY WORDS: Euler solver; �nite di�erence; time-marching; characteristic method;
three-dimensional �ow

1. INTRODUCTION

Flows with high Reynolds numbers are essentially dominated by convective e�ects and the
free stream properties can be calculated using the conservative Euler equations which re-
solve rotationality, shock waves and contact discontinuities. Traditional �nite di�erence Euler
schemes that are based on �xed stencil interpolations, solve the conservative �ow equations
and capture shocks. However, �xed stencil interpolation of second or higher order accuracy is
necessarily oscillatory near a discontinuity. In 1970s and early 1980s, various methods incor-
porating arti�cial viscosity have been developed to damp out these oscillations. Later, limiters
were applied to eliminate oscillations. However, the order of accuracy of the interpolation near
the discontinuity necessarily degenerates to �rst order near smooth extrema [1]. Shock �tting
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techniques suitable for high-speed �ows were also developed. Shock �tting techniques makes
special treatment for explicitly computing discontinuities and inaccuracies due to shock smear-
ing are eliminated. The shock position and strength are calculated from the Rankine–Hugoniot
relations. If shocks are tracked, the equations need not be in conservative form. The method
of characteristics for hyperbolic equations is the natural choice for numerical computation as
the calculation node points lie along the ‘characteristics’. There are many classical choice of
network con�guration associated with three-dimensional �ow equations solved by the methods
of characteristics. Tetrahedral characteristic line and surface networks of Thornhill [2] and the
prismatic network of bicharacteristics of Holt [3] are to name a few. To ful�ll the stability
criterion, the domain of dependence of these characteristic di�erence schemes must contain
the domain of dependence of the di�erential equations. This task has been greatly simpli�ed
in the present algorithm as the streamline position and �ow properties are calculated along
local time–space characteristics.
Method of characteristics can be used with a shock-patching procedure where the shock

build-up is indicated by a crossing of characteristics of the same family. Many successful shock
�tting methods exist. Moretti’s method [4] is a transient method based on characteristics cal-
culations of the moving shock wave. Eaton [5] applies this method to three-dimensional �ow
with good accuracy. Another characteristic approach in resolving discontinuity in an Eulerian
mesh is the use of an ‘inverse marching method’. The present method falls into this category
and uses the quasi-one-dimensional characteristic forms of the Euler equations with a shock-
�tting calculation. Accordingly, the location of the solution points are speci�ed a priori. The
three characteristics at the solution node are extended rearward to intersect a plane on which
are located initial data points from previous calculation. The only reduction in accuracy stems
from the interpolation of calculated �ow properties along the initial streamline. The quasi-one-
dimensional formulation of the Euler equations were rigorously described in 1984 [6]. Even
though conservative variables were not used, highly accurate solutions were obtained. The
formulation was employed to solve the �ow properties in wave rotor applications [7, 8]. Time
accurate solutions were obtained, where shocks and contact discontinuities were tracked and
corrected explicitly. The formulation was also shown to be suitable to supersonic/hypersonic
analysis of �ow �elds with predominantly oblique shocks [9].
The present work is a development and application of Verho�’s formulation to multi-

dimensional internal �ows. The method was validated by comparison with analytic and nu-
merical solutions. Firstly, a single diaphragm shock tube problem is solved to show the code’s
transient solution capability. Secondly, transonic quasi-one-dimensional Laval nozzle �ow
is solved. Then, subsonic two-dimensional sinusoidal bump duct �ow solutions have been
obtained. Finally, the solutions of a three-dimensional supersonic �ow with an angle of at-
tack, entering a simple constant area duct have been obtained.

2. THREE-DIMENSIONAL CHARACTERISTIC EULER EQUATIONS

The following governing equations of motion describe the high-speed internal �ow of an un-
steady, inviscid, adiabatic, compressible ideal gas with respect to a stationary reference frame.
The three-dimensional Euler equations are written in terms of extended Riemann variables
in a natural streamline co-ordinate system (s; m; n). As a result, Euler equations become a
quasi-one-dimensional system, regardless of the number of spatial dimensions. The time step
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is determined by the CFL criteria, as to assure the numerical stability of the scheme. Accord-
ingly, the initial data points 1, 2, 3 (Figure 2) always lie within the zone of dependence of
the solution point at a new time step and no explicit numerical dissipation or smoothing is
required to further enhance the stability of the solution. Subsonic, transonic and supersonic
�ows can be handled equally well. The extension of the method can be evaluated for the
solution of the Navier–Stokes equations, which would require inclusion of addition source
terms in Equations (1)–(5).
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where, the velocity magnitude and speed of sound are denoted by q and a, respectively, and
P is the logarithm of pressure. The extended Riemann variables Q and R are de�ned as

Q≡ q+ aS (6)

R≡ q− aS (7)

while the modi�ed entropy is de�ned in terms of pressure p and density � as

S ≡ 1
�(�− 1)[2�− ln(p=�

�)] (8)

The �ow angles � and � and the streamline co-ordinate system are de�ned in Figure 1. Time
is denoted by t, while distances along and normal to the streamline direction are denoted by
the vectors s; m and n, respectively. The n direction lies in the plane de�ned by the y-axis
and the angle �; the m direction is normal to this plane.
The �ux vector splitting procedure of Reference [10] is used to distinguish directions of

propagation normal to the local streamline direction. The three-dimensional equation in matrix
form is

@
@t

{F}+ [A] @
@s

{F}+ [B] @
@n

{F}+ [C] @
@m

{F}= {0} (9)
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Figure 1. De�nition of �ow angles and streamline co-ordinate system.

where

{F}= {Q R � �}T (10)

and [A] is the diagonal matrix of characteristic velocities

[A]=



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0 0 q 0
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
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[A] matrix is composed of eigenvalues along the diagonal. [B] and [C] matrices are
written as

[B] =
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[B] matrix related to normal direction n and can be transformed in characteristic directions:

[B]= [X ]−1[�B][X ] (14)

where [�B] matrix is composed of eigenvalues normal to the streamline direction.
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Using Equations (12), (14) and (15), the matrix [X ] (is determined and the [B] matrix is
split into two parts as

[B]= [B+] + [B−] (16)

where [B+] and [B−] correspond to the positive and negative eigenvalues, respectively
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Similarly, the matrix [C] related to the co-normal direction m, is split as

[C]= [C+] + [C−] (19)

where
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The system of equations for 3D isentropic �ow thus becomes
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where, (@=@n)( )+ and (@=@n)( )− are one sided-derivatives along n, corresponding to the
positive and negative eigenvalues normal to the streamline direction, respectively. Along m,
(@=@m)( )+ and (@=@m)( )− derivatives have similar meaning.
The �ow variables are non-dimensionalized with respect to far-�eld conditions.

3. SOLUTION METHOD

Each equation in the system (Equations (22)–(25)) has the general form

@w
@t
+ �

@w
@s
= z (26)
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where
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In the s–t plane, the characteristic equation is

ds
dt
= �; �= q± a; q (30)

and the compatibility equations are:

dQ
dt
= z1 along
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= q+ a (31)
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= q− a (32)
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= z3 along
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dt
= q (33)
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Using an inverse marching procedure, these ordinary di�erential equations are integrated along
the characteristic trajectories to calculate the �ow variables (Q;R; S; � and �) at the next time
level.
This procedure is repeated until convergence. The error term checked for convergence is

determined by calculating the maximum change in pressure between two consecutive time
levels.

error = max

∣∣∣∣∣p
n+1
i; j; k − pni; j; k
pni; j; k

∣∣∣∣∣ i = 1→ imx
j = 1→ jmx
k = 1→ kmx

(41)

4. INVERSE MARCHING, SHOCK FITTING AND DISCRETIZATION

The three characteristics lines intersecting a computational node, are extended rearward to
intersect the streamline which passes through the same point in the previous time t. For two-
and three-dimensional �ows, the characteristic trajectories in space–time domain are shown in
Figures 2 and 3, respectively. The Courant–Friedrichs–Lewy (CFL) stability criterion is used
in evaluating the local time step.
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The time step, �t, is determined using the CFL condition which requires the domain
of dependence of the numerical approximation to include the domain of dependence of the
di�erential equations. The maximum time step is calculated using

max(�t)=CFL
max(�x)
min |q+ a| (42)

The time step, �t, can be calculated either for each individual node, or for the entire compu-
tational domain. The former method is called the ‘local maximum time stepping’ where the
latter is called the ‘global maximum time stepping’. If local maximum time stepping is used,
the solution over the whole domain is not time accurate, but convergence to steady state is
faster.
CFL numbers less than 1.0 results in convergence, where CFL number larger than 1.0

trigger instabilities and the solution diverges.
Shock treatment starts with identifying the intervals or cells where compressions of su�cient

strength are located. Using an iterative procedure, the shock velocity is calculated and the
unsteady problem is transformed into a steady one with respect to the shock speed. Then,
normal shock relations are used to calculate the �ow variables downstream of the shock. The
shock location is tracked in time and the �ow variables at the nodes downstream of the shock
are calculated using the shock �tting technique of Moretti [11].
After each iteration, a shock correction based on mass, momentum and energy conservation

is applied. This procedure removes the shock jump errors and force the shock wave to the
correct location.
The concept of shock correction used in one-dimensional �ows is also applicable in prob-

lems involving two- or three-dimensional �ows. Since the formulation is based on a quasi-
one-dimensional �ow, information about the orientation of the shock normal is necessary.
Similar to that of Moretti [11] the shock correction process is started by evaluating a shock
parameter, � for every possible pair of neighbouring grid points. If � exceeds some threshold,
the interval is marked as having a shock fragment.
The velocity components normal to the shock wave are calculated. Using the normal velocity

components and normal shock relations, shock jump errors are eliminated.
Although shock �tting in one-dimensional and multi-dimensional �ows are handled in a

similar fashion, book-keeping required for shock �tting in multi-dimensional �ows is relatively
cumbersome.
The local source terms z (the right-hand side of Equation (26)), the independent vari-

ables w (i.e. Q;R; S; � and �) and the dependent variables q at the new time level are
evaluated using the former �ow parameters at points 1, 2, 3. Streamwise spatial deriva-
tive, @w=@s, and the derivatives normal to the streamline direction, @w=@n and @w=@m, are
discretized with one sided di�erences in a manner consistent with the physical direction of
wave propagation. If the �ow is supersonic, streamwise derivatives of all the �ow variables
are calculated using backward di�erencing. If the �ow is subsonic, @R=@s is calculated using
forward di�erencing and the rest of the streamwise derivatives are calculated using backward
di�erencing.
For a 2D �ow, the computational cells used in the calculation of the @w=@s and @w=@n

derivatives are shown in Table I as shaded regions.
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Table I. Computational cells used in calculating streamwise
and normal derivatives.
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Figure 4. Evolution of velocity distribution.

5. RESULTS AND DISCUSSION

5.1. One-dimensional shock tube problem

Classical shock tube problem is solved, since it is a good test problem for high-speed com-
pressible �ow with unsteady wave propagation.
The shock tube is divided into 100 equal spatial intervals. Initially the gas is at rest at

constant temperature with a pressure ratio of 5:1 across the diaphragm which is located in the
middle of the tube. After the diaphragm is ruptured, the contact surface and the shock wave
are tracked and a one point shock correction is applied after each iteration.
CFL number was 0.99, where the shock reached the end of the tube in about 60 iterations.
The unsteady wave propagation is shown in Figures 4–7 using the plots of velocity, modi�ed

entropy, pressure and density distributions. Steep discontinuities at the contact surface and the
shock wave are evident. As expected, across the shock velocity, modi�ed entropy, pressure
and density change discontinuously. On the other hand, across the contact surface modi�ed
entropy and density change discontinuously whereas velocity and pressure are continuous. The
propagation of shock and contact surface is plotted in Figure 8 and the results are in good
agreement with the exact solution.

5.2. Transonic Laval nozzle (Q1D)

The transonic �ow in a converging–diverging nozzle is solved to demonstrate the accuracy
of the code for a quasi one-dimensional �ow. The geometry of the nozzle is given by the
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Figure 5. Development of entropy distribution.
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Figure 6. Evolution of pressure distribution.
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Figure 7. Evolution of density distribution.
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Figure 8. Shock and contact surface location in time.
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Figure 9. Unsteady evolution of the �ow.

following expressions:

06x62 A(x)=1 + 0:033333(1− 0:5x)2

26x610 A(x)=1 + 0:027083(1− 0:5x)2

Note that the throat is at x=L=0:2. Following boundary conditions are used

pin = 6:40; pout = 6:91

Tin = 0:90; Tout = 0:96

�in = 7:07; �out = 7:17

uin = 0:77; uout = 0:55

Initially the nozzle is assumed to be separated by a diaphragm placed at x=L=0:9. Initially the
pressure and density ratio across the diaphragm are assumed to be 6.40/6.91 and 7.07/7.17,
respectively. Initially the gas on both sides is assumed to have �ow velocities of 0.77 and
0.55. These unrealistic initial conditions are speci�ed to see the robustness of the code. After
the diaphragm is ruptured, the discontinuity is tracked and a one point shock correction is
performed after each iteration. The unsteady evolution of the �ow in the nozzle is illustrated
in Figure 9 where CFL number was 0.99.
Steady state pressure, density and Mach number distribution along the nozzle are given in

Figures 10–12 together with the analytical solution. Numerical and analytical results are in
excellent agreement. Steady state shock location and the discontinuity magnitude across the
shock are predicted accurately.
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Figure 10. Steady state pressure distribution along the converging–diverging nozzle.
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Figure 11. Steady state density distribution along the converging–diverging nozzle.

The shock location history is shown in Figure 13 for CFL numbers of 0.3, 0.5, 0.7 and 0.85.
Maximum deviation between steady state shock locations for di�erent CFL numbers is 0.12%
of the nozzle length. The largest deviation with respect to exact shock position is 0.33% of
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Figure 12. Steady state velocity distribution along the converging–diverging nozzle.
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Figure 13. Shock location history for di�erent CFL numbers.

the nozzle length which is encountered for CFL=0:85. Sharp shock geometry, correct shock
location and correct shock jump demonstrates that shock tracking and shock correction are
managed accurately by the present method.
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Figure 14. Convergence history.

5.3. Sinusoidal Bump (2D)

The �ow in a two-dimensional duct with a sinusoidal bump is calculated for an inlet Mach
number of 0.39. The duct contour is sinusoidal and symmetric about the throat. The area ratio
of the throat is 0.75, and the upstream and downstream areas are equal. The computational
grid used in this study has 161× 41 nodes whereas the sinusoidal portion has 81× 41 nodes.
Far �eld (characteristic) boundary conditions are employed by imposing the constant value

of Q∞ (and a zero value of � along the upstream boundary and the constant value of R∞
(along the downstream boundary. The solution converges after about 5500 iterations with a
CFL number of 0.50 (see Figure 14). The calculated Mach number and �ow angle contours
by the present code and that of Verho� [12] are shown in Figures 15–18. Mach number
distributions along the lower and upper walls are shown in Figure 19. The contour lines and
wall distributions are symmetric about the throat, which indicates the solution accuracy.

5.4. 3D Supersonic �ow in a constant area duct

The three-dimensional duct �ow with square cross section is calculated for an inlet Mach
number of 2. A 41 × 41 × 41 grid with cubic cells is used for the 3D geometry which is
practically a cube.
On both in�ow and out�ow surfaces, characteristic boundary conditions are applied. At the

in�ow boundary, the Riemann variables Q and R, modi�ed entropy S, inlet �ow angles �
and � are speci�ed explicitly. At the out�ow boundary, no physical boundary conditions are
speci�ed, but numerical boundary conditions are calculated based on the information de�ned
by the inner �ow.
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Figure 15. Mach number contours.

Figure 16. Reference Mach number contours [12].
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Figure 18. Reference �ow angle (�) contours [12].
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Figure 19. Mach number distribution along the walls.
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Figure 20. Convergence history.

The inlet �ow angles were �=−6◦ and 6◦. Thus, the �ow is expected to be symmetric
about the diagonal A–B. The solution converges after about 300 iterations with a CFL number
of 0.50 (see Figure 20).
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1.56

2.46

1.98

1.98

B

A

Figure 22. Mach contours at x=L=0:50.

Mach contours at various axial stations along the duct are shown in Figures 21–23. As
expected the �ow is symmetric about the diagonal A–B. The oblique shock surface forming
on the lower and side surfaces of the duct, interact to create the symmetry about the diagonal.
The shocks obtained by the present method are in close agreement with those presented by
Verho� [13] (see Figure 24).
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Figure 24. Mach contours [13].
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6. CONCLUSION

A characteristic Euler algorithm is developed for the solution of high-speed internal �ows.
The equations are expressed in local streamline co-ordinate system and are written in terms
of extended Riemann variables. In this form, Euler equations become a quasi-one-dimensional
system regardless of the number of spatial dimensions. Subsonic, transonic and supersonic
�ows can be handled equally well.
A classical shock tube problem was solved to test and demonstrate the accuracy of the

unsteady wave motion and shock �tting approach. The discontinuity location and the jump
in �ow parameters across the discontinuities are found to be in close agreement with the
analytical solution. The quasi-one-dimensional transonic �ow in a Laval nozzle is then solved
to show that the discontinuity location within the nozzle is calculated accurately.
The two-dimensional subsonic �ow over a sinusoidal bump was solved to show the capa-

bility and accuracy in handling subsonic �ows. In this regard, the contour symmetry about
the throat is successfully calculated. Finally, a three-dimensional supersonic �ow in a con-
stant area duct is calculated. In this simple geometry, oblique shocks and expansion fans are
formed due to inlet �ow angles. The results are successfully compared with available numerical
solution.

NOMENCLATURE

a speed of sound
CFL Courant–Friedrich–Lewy number
m unit vector normal to the streamline and n-direction
n unit vector normal to the streamline direction (in the plane de�ned by the y-axis

and s vector)
p pressure
P logarithm of pressure (P≡ ln(p))
Q modi�ed Riemann variable (Q≡ q+ aS)
q �ow speed
R modi�ed Riemann variable (R≡ q− aS)
S modi�ed entropy

(
dS ≡−1

�
dQ
T

)
[6]

s unit vector in the streamline direction
t time
w vector of the principle variables, Q;R; S; �; �
x spatial variable
y spatial variable
z spatial variable

vector of the right-hand sides of the governing equations

Greek symbols

@ partial derivative operator
�t time step
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� �ow angle
� ratio of speci�c heats
� spatial variable in the computational domain
� characteristic (eigenvalue)

the slope of characteristic trajectory in the space–time plane
� �ow angle
� density
� spatial variable in the computational domain
� spatial variable in the computational domain

Subscripts

i node index (along x direction)
j node index (along y direction)
k node index (along z direction)
m m-derivative (normal)
n n-derivative (normal)
s s-derivative (streamwise)
t time derivative
x x-component or x-derivative
y y-component or y-derivative
z z-component or z-derivative
� �-derivative
� �-derivative
� �-derivative

Superscripts

n nth time level
normal

T transpose of the matrix
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